Condition-assessment-based Finite Element Modeling of Long-span Bridge by Mixed Dimensional Coupling Method
نویسندگان
چکیده
Visual inspection has showed distinct limitations in practical application in condition assessment procedure of large civil infrastructures. The real condition of structure thus greatly depends on an accurate finite element model considering initial defects and deteriorating progress. For the purpose of fatigue damage evaluation of these structures, usually a global structural analysis using a global FE model is first conducted to determine the critical locations, based on which local analysis is then carried out to obtain the hot-spot stress distribution that is commonly considered as the fundamental information for the condition assessment. Since the structural characteristics behaved at the different scales, a mixed dimensional coupling method is obviously necessary and implemented by merging typical detailed joint geometry model into the global model so that the hot-spot stress could be directly output through a single step of analysis. As a case study, a multi-scale model of Tsing Ma Bridge (TMB) is then developed by aforementioned coupling method. The comparison of dynamic characteristics and static responses in term of first few natural frequencies and vertical displacement influence line data respectively between the calculated results and monitoring data indicated that the mixed dimensional coupling method adopted in this paper is convenient and appropriate, and even reliable and accurate for the purpose of condition assessment of long-span bridge structures. The accumulative fatigue damage due to the typhoon York showed that it is much severer than that caused by normal traffic loading, which indicated more attentions should be made after these ultimate events occurred.
منابع مشابه
Discrete Element Modeling of Dynamic Compaction with Different Tamping Condition
Dynamic Compaction (DC) is a common deep compaction method that is usually used for densification of coarse-grained soils. Although traditional continuum-based models such as the Finite Element Method can be successfully applied for assessment of stress distributions or deformations induced by DC, they are typically not adequate for capturing the grain scale mechanisms of soil behavior under im...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملCondition assessment of long span cable-stayed bridges based on Structural Health Monitoring Techniques
This paper presents long-term condition assessment approaches of cables and bridge decks under in-service loads based on Structural Health Monitoring (SHM) technique. Aiming to the critical structural components, three important issues related to the long term performance evaluation, including loads and responses modelling, resistance degradation and fatigue life assessment, were investigated i...
متن کامل